

Proposed Improvement For The V6 AIRS RTA

S. Hannor

Proposed Improvements For The V6 AIRS RTA

Scott Hannon, Larrabee Strow, Sergio DeSouza-Machado

Atmospheric Spectroscopy Laboratory (ASL)
Physics Department
and the
Joint Center for Earth Systems Technology

University of Maryland Baltimore County (UMBC)

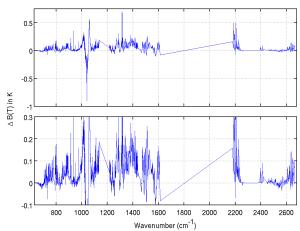
April 16, 2008

Introduction

Proposed Improvement For The V6 AIRS RTA

- The Level 2 AIRS Radiative Transfer Algorithm (RTA) is a non-scattering forward model
- We recently developed an IASI RTA very similar to the V5 AIRS for NOAA/NESDIS (Barnet). However, we used some new H₂O and minor gas spectroscopy in the IASI RTA.
- We are currently producing a new AIRS (V6?) RTA, regardless of whether it will be used in the AIRS V6 PGE. (We need identical AIRS and IASI RTA's to cross-validate AIRS and IASI to better than 0.1K.)
- Not all AIRS (V6?) RTA changes have been finalized.

- Bug fix for CO₂, N₂O, SO₂, and HNO₃ dummy profile adjustment
- Improved variable SO₂ modeling in dry conditions
- Adding some fake (filled) channels; see L1C presentation.
- Revised spectroscopy for H₂O, O₃, SO₂, and HNO₃. These now use the latest HITRAN 2004 database, while all other gases still use HITRAN 2000 as changes are generally negligible.
 - Large O_3 change between HITRAN 2000 and 2004 in $10\mu m$ region already approximated in V5 via optical depth tuning.
 - H₂O changes significant in a handful of channels, but otherwise are generally minor.
 - SO₂ and HNO₃ changes nearly invisible.


Spectroscopy Changes ΔBT

Panels are identical, just different y-axis scale.

Proposed Improvement For The V6 AIRS RTA

S. Hannoi

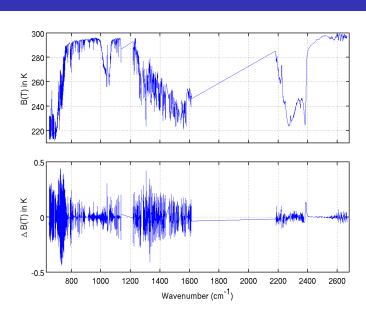
This graph gives an upper estimate of changes between the V5 and possible V6 RTAs. Note that the O_3 changes will be much smaller.

Revised Optical Depth Tuning

Proposed Improvement For The V6 AIRS RTA

- The V5 RTA used "optical depth tuning" in some channels for some gases to bring calculations into better agreement with observations, based on coincident RS-90 sondes during AIRS validation campaign.
- Tuning adjustments thought to be primarily correcting for spectroscopy errors, but may include instrument modelling errors (SRFs and fringes).
- May be able to improve spectroscopy/tuning by comparing AIRS and IASI obs-calc. Need DOE-ARM TWP IASI/AIRS sonde results.
- Revised V6 spectroscopy requires revised V6 optical depth tuning. Will re-visit this in the summer time-frame.

Channel Frequency Drift, Part 1


Proposed Improvement For The V6 AIRS RTA

- AIRS channels have a slow long term frequency drift that we estimate will shift the channels about 1% of a channel width to higher freqs between years 2002-2013. See our L1C presentation for more details.
- We are producing V6 RTAs on 3 different frequency grids that cover the expected variation in the true AIRS SRF centroids over the life of the instrument.
- We recommend a new standard fixed frequency set placed at the nominal mid-mission location. One of the RTAs will be for this frequency grid. The others will be displaced by $\pm 1\%$ of the SRF width.

Effects of A 1% Frequency Shift

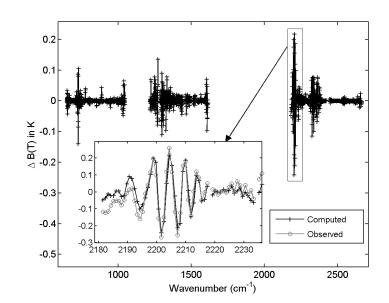
Proposed Improvements For The V6 AIRS RTA

Channel Frequency Shift, part 2

Proposed Improvement For The V6 AIRS RTA

- Short-term orbital frequency shifts may be important for retrievals (see Evan Manning's talk)
- Given these three RTAs, V6 retrievals could:
 - Continue doing all retrievals at nominal frequencies
 - Attempt to track frequency shifts using interpolated RTA coeffcients. This approach would use a parameterized frequency calibration model (see L1C talk).

Pre- and Post-Nov.2003 Coefficient Databases


Proposed Improvemen For The V6 AIRS RTA

- Minor AIRS design flaw resulted in "fringes" (aka channel spectra) in Spectral Response Functions.
- Fringe position is a function of AIRS operating temperature
- AIRS was deliberately shutdown in late Oct.2003 due to huge solar storm.
- In mid Nov.2003 the AIRS channel freqs were reset to their Sep.2002 position, but this required a small change in the AIRS operating temperature. Thus the fringes shifted.
- For V6 we will make available separate RTA databases for pre- and post-Nov 2003.
- Some effects of fringe shift visible throughout AIRS spectra, but mostly in 2180-2200 cm⁻¹ CO region.

Fringe Shift $\Delta B(T)$ Due to Nov. 2003 Shutdown

Proposed Improvement For The V6 AIRS RTA

Scatter/Cloudy RTA

Proposed mprovements For The V6 AIRS RTA

- Current V5 AIRS RTA algorithm can only handle clear sky, or crude black clouds with transmittance = 0 and emissivity = 1
- Over the last few years we have developed cloudy sky variants of the RTA which can do transmissive and scattering clouds
- The cloudy sky RTA is more complicated and slower than the clear sky code. Maybe double the complexity and runtime.
- It would be a big job to implement the cloudy RTA in the PGE due to all the "plumbing" changes it would require.
 We do not have the expertise to do this.
- Retrieval of dust and cirrus properties would be main uses for scattering RTA. Our approach is OK for long-wave, but has limitations in short-wave.

Summary and Plans

Proposed Improvement For The V6 AIRS RTA

- A new AIRS RTA(s) is in development for V6.
- Slightly revised spectroscopy to bring it up-to-date.
- Revised spectroscopy will require we re-do at least some of the optical depth tuning. Big job, will be done in stages.
- Not yet sure how/if frequency drift will be dealt with
- Separate databases for pre- and post-Nov.2003 fringe positions.
- Scattering RTA for V6??